57 research outputs found

    BEACON:A Summary Framework to Overcome Potential Reimbursement Hurdles

    Get PDF
    Objective To provide a framework for addressing payers' criteria during the development of pharmaceuticals. Methods A conceptual framework was presented to an international health economic expert panel for discussion. A structured literature search (from 2010 to May 2015), using the following databases in Ovid: Medline((R)) and Medline((R)) In-Process (PubMed), Embase (Ovid), EconLit (EBSCOhost) and the National Health Service Economic Evaluation Database (NHS EED), and a 'grey literature' search, were conducted to identify existing criteria from the payer perspective. The criteria assessed by existing frameworks and guidelines were collated; the most commonly reported criteria were considered for inclusion in the framework. A mnemonic was conceived as a memory aide to summarise these criteria. Results Overall, 41 publications were identified as potentially relevant to the objective. Following further screening, 26 were excluded upon full-text review on the basis of no framework presented (n = 13), redundancy (n = 11) or abstract only (n = 2). Frameworks that captured criteria developed for or utilised by the pharmaceutical industry (n = 5) and reimbursement guidance (n = 10) were reviewed. The most commonly identified criteria-unmet need/patient burden, safety, efficacy, quality-of-life outcomes, environment, evidence quality, budget impact and comparator-were incorporated into the summary framework. For ease of communication, the following mnemonic was developed: BEACON (Burden/target population, Environment, Affordability/value, Comparator, Outcomes, Number of studies/quality of evidence). Conclusions The BEACON framework aims to capture the 'essence' of payer requirements by addressing the most commonly described criteria requested by payers regarding the introduction of a new pharmaceutical

    AI-based dimensional neuroimaging system for characterizing heterogeneity in brain structure and function in major depressive disorder:COORDINATE-MDD consortium design and rationale

    Get PDF
    BACKGROUND: Efforts to develop neuroimaging-based biomarkers in major depressive disorder (MDD), at the individual level, have been limited to date. As diagnostic criteria are currently symptom-based, MDD is conceptualized as a disorder rather than a disease with a known etiology; further, neural measures are often confounded by medication status and heterogeneous symptom states. METHODS: We describe a consortium to quantify neuroanatomical and neurofunctional heterogeneity via the dimensions of novel multivariate coordinate system (COORDINATE-MDD). Utilizing imaging harmonization and machine learning methods in a large cohort of medication-free, deeply phenotyped MDD participants, patterns of brain alteration are defined in replicable and neurobiologically-based dimensions and offer the potential to predict treatment response at the individual level. International datasets are being shared from multi-ethnic community populations, first episode and recurrent MDD, which are medication-free, in a current depressive episode with prospective longitudinal treatment outcomes and in remission. Neuroimaging data consist of de-identified, individual, structural MRI and resting-state functional MRI with additional positron emission tomography (PET) data at specific sites. State-of-the-art analytic methods include automated image processing for extraction of anatomical and functional imaging variables, statistical harmonization of imaging variables to account for site and scanner variations, and semi-supervised machine learning methods that identify dominant patterns associated with MDD from neural structure and function in healthy participants. RESULTS: We are applying an iterative process by defining the neural dimensions that characterise deeply phenotyped samples and then testing the dimensions in novel samples to assess specificity and reliability. Crucially, we aim to use machine learning methods to identify novel predictors of treatment response based on prospective longitudinal treatment outcome data, and we can externally validate the dimensions in fully independent sites. CONCLUSION: We describe the consortium, imaging protocols and analytics using preliminary results. Our findings thus far demonstrate how datasets across many sites can be harmonized and constructively pooled to enable execution of this large-scale project

    British Manual Workers: From Producers to Consumers, c.

    Full text link

    Neutral pion cross section and spin asymmetries at intermediate pseudorapidity in polarized proton collisions at √s = 200 GeV

    Get PDF
    The differential cross section and spin asymmetries for neutral pions produced within the intermediate pseudorapidity range 0.8 < η < 2.0 in polarized proton-proton collisions at √s = 200  GeV are presented. Neutral pions were detected using the end cap electromagnetic calorimeter in the STAR detector at RHIC. The cross section was measured over a transverse momentum range of 5 < p[subscript T] < 16  GeV/c and is found to agree with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry A[subscript LL] is measured in the same pseudorapidity range and spans a range of Bjorken-x down to x ≈ 0.01. The measured A[subscript LL] is consistent with model predictions for varying degrees of gluon polarization. The parity-violating asymmetry A[subscript L] is also measured and found to be consistent with zero. The transverse single-spin asymmetry A[subscript N] is measured over a previously unexplored kinematic range in Feynman-x and p[subscript T]. Such measurements may aid our understanding of the onset and kinematic dependence of the large asymmetries observed at more forward pseudorapidity (η ≈ 3) and their underlying mechanisms. The A[subscript N] results presented are consistent with a twist-3 model prediction of a small asymmetry over the present kinematic range.United States. Dept. of Energy. Office of Nuclear PhysicsUnited States. Dept. of Energy. Office of High Energy PhysicsNational Science Foundation (U.S.

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
    corecore